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Abstract-The elastodynamic problem of the diffraction of stress waves by a crack near an interface is
considered. Using integral transform techniques the case of a crack perpendicular to the interface is reduced
to a system of singular integral equations. The stress intensity factors at the crack tips are calculated by
numerical techniques over a range of frequency for different material properties and crack distances from the
interface.

1. INTRODUCTION

In recent years several papers have appeared dealing with the diffraction of waves for a finite
crack. These papers deal with diffraction problems for either antiplane elasticity (slit crack),
plane elasticity (slit crack), or three dimensional elasticity (penny-shaped crack). For all cases
considered the problem is concerned with the impingement of a plane wave on an isolated crack
in an infinitely extended homogeneous elastic body. To the author's knowledge composite media
with finite cracks except for [1] have not been studied dynamically.

The purpose of the analysis herein is to dynamically analyze the stress field near a crack
within a half plane which is bonded to a half plane of \a different material. The crack is
perpendicular to the bond plane, and an incident longitudinal wave is propagated through the
system parallel to the crack. The mathematical discription is more complex than for antiplane
problems because the scattered waves induced by the crack are composed of both longitudinal
and transverse waves, even though the input wave may be of only one type, say a longitudinal
wave. Results will be given in the form of stress intensity factors for several values of the shear
moduli and the Poisson's ratios.

The problems are formulated by using integral transform techniques, and they are reduced to
the solution of a system of singular integral equations. The method most suitable for carrying
through the numerical analysis is the one of Erdogan and Gupta [2, 3], which is essentially a
collocation scheme.

2. FORMULATION OF PROBLEM

An unbounded medium consists of two joined elastic half planes of different materials as
shown in Fig. 1. The rectangular coordinate system (x, y, z), is oriented such that the plane y = 0
coincides with the interface. The material constants of the upper and lower half planes: shear
modulus, Poisson's ratio and the mass densities, are denoted by /LI, PI, Pi and /L2, P2, P2
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Fig. I. Bonded half planes with a crack.
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respectively. In the subsequent sections the subscripts (1) and (2), will refer to the upper and
lower half plane. Let a vertical crack of length 2c be located in the lower half plane such that the
crack is in the plane x =0, and the tips of the crack are at distances a and b from the x -axis. The
components of the displacements in the x, y, and z directions are given by u" Uy and u,. For the
plane strain problem, uz = 0, and all derivatives with respect to z vanish. The equations of motion
are

(1)

(2)

where j = 1for y sO, j = 2for y ~°and where CLI are the velocities of waves of dilatation, and CTI

are the velocities of waves of distortion, i.e.,

It is assumed that the composite medium is subjected to a plane longitudinal wave originating
at y = - 00, and normally incident to the interface of the composite medium. The incident
displacement waves can be expressed in the form

(3)

where Ao and ko are the amplitude and wave number of the incident waves. The problem of
reflection and refraction of the incident wave has been discussed in the book by Achenbach [4].

For the case of normal incidence, the shear stresses are equal to zero and the normal stress
(uxh(O) in the lower half plane can be expressed in the form

(uxh(O) = iA 2koAo(cLllcu)[2plcLl/(plcLl +P2CU)]

x exp [i(koCLlY Icu - wt)]. (4)

The expression given by equation (4) represents the stress in the lower half plane in the
absence of a crack. To solve the diffraction problem the composite with a crack must be analyzed,
where the crack surfaces have a distribution of normal tractions equal and opposite to those
given by equation (4). The displacement solutions to the latter problem are the scattered waves
and they are denoted by (ux)/rJ(x, y, t), (uy)/')(x, y, t), (uxh(')(x, y, t) and (uYhl'l(X, y, t). The
complete solution will be

(Ux)/ = (ux)?)+ (ux)/,l
j = 1,2

(UY)I = (Uy)?l +(Uy)/'1.

Here, the superscripts 0 and s refer to the incident and scattered waves.
Assuming harmonic motion of the form (ux, Uy, O)e- I

"" equations (1) and (2) reduce to

V2 e* + (k1*fe* = 0, y sO

V2wz *+ (k2*fwz * = 0, y sO

(5)

(6)

(7)

(8)

and identical equations fOTE, w. involving kt, k2 for y ~owhere e*, e and w. *, wz are the dilatation
and the z component of rotation, respectively, and

If the crack surfaces are to be free from tractions, it is necessary to require that

(9)
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Since the loading of the crack surfaces implies Uy, Tx:c, Tyy are symmetric in x, the boundary
conditions may be written on x = 0 as follows:

(TXy )l(')=O -oo<y<O

(Txyh(')=O O<y<oo
(uxh(')=O O<y<a,b<y<oo

(UX )l(') = 0 -00 < y < O.

The continuity conditions of y = 0, X 2: 0 are given by

(U
Y

)l(') = (uyh(')

(Txy )/.) = (T
xy

h(.)

[(UX )l(')]' = [(U
X

)2('»)'

[(Uy)l('»)' = [(uyh('»)'

(10)

(11)
(12)

(13)

(14)

(15)

(16)

(17)

where [ )' = d[ ]/dx.
The solutions of equations (7) and (8) for the problem under consideration may be obtained in

the form of Fourier transforms and the displacements appropriate to each region given as
follows:

For y::;;O

(UX)l(')(X, y) = 1. r~ [~(kl*f2 Pe"'·y +2(k2*f2ch*Ge"2'1 . sin (~x) d~
11' Jo

(UY)I(')(X, y) = _1. r~ [al*(k1*)-2pe"'·y +2~(k2*f2Ge"2'1 cos (~x) d~.
11' Jo

For y2:0

where

aj* = [e- (kj *)2]1/2 = - i[(kj *)2- e]1/2

aj = (e - kj
2)1/2 = - i(k/ - e)1/2 j = 1,2.

(18)

(19)

(20)

(21)

(22)

The stresses that correspond to equations (18)-(21) can be easily computed by Hooke's law and
will not be given here. Equations (18)-(21) will give outgoing waves for the scattered wave
solution provided that the convention given in equation (22) is used. From equations (18)-(21) it
can be seen that there are six Fourier transforms to be solved from the boundary and continuity
conditions (9)-(17). Equations (10) and (13) are automatically satisfied by symmetry.

Equation (11) leads to the algebraic relation

(23)
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(24)

(25)

Equation (12) can be automatically satisfied by defining D(~) in the following manner:

D(~) = f b(s) sin (~s) ds

where b(s) has the physical meaning of dislocation density. Equations (15) and (17) lead to
algebraic relations from which, F and G may be given in terms of A and C. Equations (14) and
(16) lead to two integral relations. By taking the Fourier cosine transforms of these relations and
observing that the resulting infinite integrals have integrands that can be expanded in the form of
partial fractions, one can obtain equations for A and C in a relatively simple form. The
dislocation density, b(s), can be deduced from the remaining boundary condition, equation (9).
By using techniques mentioned above for the Fourier transforms, equation (9) can be reduced to
the singular integral equation given next,

where

a < y < b,x =0 (26)

K(y, s) = (k1
2- k/r 1 L~ {[(2( - k22~:~ 4a la2( 2(k/ - k22).] sin (gs) cos (gy)

+ *(k *)2 [fM, y)(A1+ Ble-a,s + C1e-a ,S) +M~, y)(A1* +B1*e-a,s + CI*e-aZs)]} dg
al 2 EM)EM) +PM)P2W

(27)

and

A 1* = - (k1k2/al)2, B 1* =2( +k/[k/ - (k1a2/al)2]/(k/ - k/), C1*= - 2e

Al = (k2/al)2(k/ - 2kI
2), B1 =4( - (k2/al)2(k/ - 2k1

2), C1 = - 4gz

1M, y) = (/-L21 /-L1){[2e +(k/ - 2k/)]EM)e-a ,y + 2~a2P2(~)e-a,y

M~, y) = - [2e +(k/- 2kI2)]~-1Pl(~)e-a,y+2a2E2(~)e-a,y

El(~) = (k2*)2(e +al*a2) +[2e - (/-L2! /-Ll)(a/ +e)][al*a2* - e]
EM) = (k2*?{al[2e - (k2*)2] +a 1*(/-L2//-L1)(2e - k/)}

+ 2(/-L2/ /-Ll -1)ale[2e - (k2*)2 - 2a l*a2*]

Pl(~) = g{(k2*)2[2e - (k2*)2 +2al*a2/-L2!/-Ld
+ [2e - (/-L21/-LJl(e +a22)][2al*a2* - 2e + (k2*f])

P2(g) = g{-(k1*?[al* +ad +2(/-L2!/-Ll -1)al(al*a2* - e)}·

In solving the singular integral equation (26), the consistency condition

f b(s)ds =0

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

must also be applied.
The diffracted waves rrray give rise to Stonely waves which are not diminished at a large

distance of x, and the kernel, K (y, s), will always have one Cauchy type singUlarity. If this is the
case, the kernel may be evaluated in the sense of its principal value. For the values of material
properties to be discussed in the next section of Numerical Analysis and Conclusions this
phenomena will not occur.
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3. NUMERICAL ANALYSIS AND CONCLUSIONS

The numerical analysis is concerned with the solution of equation (26) subject to condition
(36). The analysis will be separated into the two cases: (a) crack within the lower half plane (a > 0)
and (b) crack extending to the interface of the composite (a = 0). The reasons for such a separation
are the same as discussed in [1] when the layer was fully cracked. In the analysis to follow the
densities of the two materials, Pi, P2 will be taken equal for convenience.

(a) Case for a > O. It is convenient to introduce the nondimensional variables as follows:

s = CT +(a +c) = CTh Y= cy' +(a +c) = CSh ~ = kOT/, k l *= ko= f3/c, li l =(f.LIf3//f.Ld312)1/2,
li2 = (f.L11f.L2f312)1I2, li3 = IIf3\ and tp(T) = b(T)/koAo, where f31 and f32 are given in equations (24).
Noting that the unknown function, tp(T), and kernel, K(Sh 1'1) are complex, the integral equation
(26) can be written as two coupled singular integral equations whose kernel and unknown
functions are real and are given by

where

and

1fI tp2(l') 1fI [ ( 1)]- --dT+- K 2'P1 + K I+-- tp2 dT = - mocos (f3li l sl )
1f' -I l' - S 1f' _I 1'1 + SI

(37)

(38)

(39)

The singular integral equations (37) and (38) are to be solved with the following subsidiary
conditions:

fl 'Pb)d1' = 0 (4Oa)

(40b)

The solution of equations (37) and (38) with subsidiary conditions, equations (40) can be
carried out by means of the Gauss-Chebyshev integration formula in the manner devised by
Erdogan and Gupta[2].

By expressing the solution of (37) and (38) as

(41)

and using the Gauss-Chebyshev integration formula to evaluate the integrals in these equations, a
system of 2n - 2 algebraic equations for the 2n unknowns is obtained. Remaining equations are
obtained from equation (40).

After evaluating. Vt and 02, the stress intensity factors K" and K" for the crack tips y = a, h,
respectively, may be obtained as

(42a)

(42b)
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Equations (42) lead to:

K a hl-2koAoC112 = 2(6/ - 61
2)/6/ . G(-I)

Kb /1L 2koAoc112 = - 2(6/ - 6/)/6/ . G(1).

(43a)

(43b)

Note that (Ka)l, (Kb)1 and (Kah, (Kbh correspond to the real and imaginary part of the stress
intensity factors Kaand Kb, respectively. The results will be given in terms of IKa1and IKbI.

(b) Case for a =O. When the upper crack tips reaches the interface, a =0, its singularity is no
longer square root, but will have a power dependence.

Taking the limit as w ~ 0, equation (26) reduces to the static problem in which the crack is
opened by a constant internal pressure as in [5]. The nature of singularity for the static case has
been studied in detail by Barnett [6] and thus is omitted here. It is easy to show that the forms for
'i'1(T) and 'i'2(T) are given by

'i'b) = G1(T)(1 +Tr-I(1- Tr1l2

'i'2(T) = G2(T)(1 +Tr-I(l- Tr1l2

where 'Y is a constant determined from the equation

where

and

(44a)

(44b)

(45)

(46)

(47)

(48)

The solution can be carried out by a procedure similar to the one given above but using the
Gauss-Jacobi integration formula[3].

The "stress intensity factors" K a and K b may be obtained from the equation

or

(49)

and Kb remains the same as given in (43b).
Numerical results were computed for normalized stress intensity factor versus normalized

wave number for a range of material and geometrical parameters. One set of curves is shown in
Fig. 2 to show qualitative behavior. The curves show that for relatively low wave-numbers,
f3 < 0·5, the stl~ss intensity factors at end a may be greater than that at end b. For 13 >0·7 the
stress intensity factors seem to follow the same trends for ends a and b with the stress intensity
factor for end b always being greater than end a.

To compare the results of the composite problem with that of the homogeneous medium,
numerical results were taken for the case, IL 1/1L2 = 0,95, which is nearly homogeneous. The
results are plotted in Fig. 3. Their results show the clear tendency of the composite problem to the
homogeneous problem as 1L1/1L2~ 1. It is noted that the stress intensity factor of the static case
must be multiplied by a factor mwhen comparing with the dynamic case where

(50)
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Fig. 2. Stress-intensity factor vs wave-number for v, = v, =0·25. JJ.11JJ.' =0·5 and various values of alc

(y =0·575 for alc =0: y =1/2 otherwise.)
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Fig. 3. Stress-intensity factor vs wave-number for the comparison of composite medium with homogeneous

medium (v, = V2 = V =0·25, JJ.11 JJ.' =0·95. aIc =0·5: dot lines are results of composite medium).
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